Mixing at large Schmidt number in the self-similar far field of turbulent jets
نویسنده
چکیده
We present results from an experimental investigation of turbulent transport and molecular mixing of a Sc S 1 conserved scalar in the fully developed self-similar far field of a steady, axisymmetric, momentum-driven, free turbulent jet issuing into a quiescent medium. Our experiments cover the axial range from the jet exit to 350 diameters downstream, and span the range of Reynolds numbers from 1500 to 20 000. Flow visualizations of the scalar concentration field directly verify the presence of an underlying characteristic large-scale organization in the jet far field essentially consistent with a simplified conceptual picture proposed in an earlier study (Dahm & Dimotakis 1987). High-resolution imaging measurements of successive instantaneous scalar concentration profiles in the jet support the presence of such a large-scale organization and provide details of its implications for mixing. These results also establish the proper similarity scaling for the mean concentration in the jet far field and give the scaling constant on the jet centreline as 5.4. We also present conserved scalar concentration p.d.f.s throughout the jet far field, and introduce a chemical reaction method for measuring the p.d.f.s with potentially molecular resolution. The amount of unmixed ambient fluid that reaches the jet centreline is found to decrease with increasing Reynolds number over the range investigated. The distribution of mixed fluid compositions in the concentration p.d.f. also appears to change over this range of Reynolds numbers, indicating that some aspects of large Schmidt number mixing in the jet far field have not yet become Reynolds number independent.
منابع مشابه
Heat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface
In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...
متن کاملNumerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملReynolds-number effects and anisotropy in transverse-jet mixing
Experiments are described which measured concentration fields in liquid-phase strong transverse jets over the Reynolds-number range 1.0× 10 Rej 20× 10. Laserinduced-fluorescence measurements were made of the jet-fluid-concentration fields at a jet-to-freestream velocity ratio of Vr =10. The concentration-field data for far-field (x/dj =50) slices of the jet show that turbulent mixing in the tra...
متن کاملThe mixing evolution and geometric properties of a passive scalar field in turbulent Rayleigh–Bénard convection
We report on measurements of a two-dimensional (2D) dye concentration field in turbulent Rayleigh–Bénard (RB) convection using the planar laser-induced fluorescence technique. The measurements were made in a vertical plane near the sidewall of a rectangular convection cell filled with water and with the Rayleigh number Ra varying from 109 to 1010, all at a fixed Prandtl number Pr = 5.3 and Schm...
متن کاملApplication of Compact Schemes to Large Eddy Simulation of Turbulent Jets
We present 3-D Large Eddy Simulation (LES) results for a turbulent Mach 0.9 isothermal round jet at a Reynolds number of 100,000 (based on jet nozzle exit conditions and nozzle diameter). Our LES code is part of a Computational Aeroacoustics (CAA) methodology that couples surface integral acoustics techniques such as Kirchhoff’s method and the Ffowcs Williams-Hawkings method with LES for the fa...
متن کامل